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Abstract
The possibility of a minimal physical length in quantum gravity is discussed
within the asymptotic safety approach. Using a specific mathematical model
for length measurements (‘COM microscope’), it is shown that the spacetimes
of quantum Einstein gravity based upon a special class of renormalization
group trajectories are ‘fuzzy’ in the sense that there is a minimal coordinate
separation below which two points cannot be resolved.

PACS numbers: 04.60.−m, 11.10.Hi, 98.80.Cq

1. Introduction

It is an old speculation [1] that quantum gravity induces a lower bound on physically realized
distances. Since this issue can be addressed only in a fundamental quantum theory of gravity
(as opposed to a low energy effective theory), it is natural to analyse it within quantum Einstein
gravity (QEG). This theory is an attempt at the nonperturbative construction of a predictive
quantum field theory of the metric by means of a non-Gaussian renormalization group (RG)
fixed point [2–18]. From what is known today, it appears indeed increasingly likely that there
does exist an appropriate fixed point which makes QEG nonperturbatively renormalizable
or ‘asymptotically safe’ [5, 7, 8, 10]. The asymptotic safety scenario for QEG is most
conveniently formulated in the language of Wilson’s general framework of renormalization
[19], using an ‘exact renormalization group equation’ which defines an RG flow on the infinite
dimensional ‘theory space’ consisting of all action functionals satisfying certain symmetry
constraints. The key idea is to base the construction of the theory on a trajectory running
inside the unstable manifold (ultraviolet critical hypersurface) of a non-Gaussian fixed point
of the RG flow. In the extreme ultraviolet (for the RG scale k → ∞) it starts infinitely close
to the fixed point, and by successive coarse graining steps it is driven away from it, thus
lowering the scale k. Conversely, starting at some finite k and increasing the energy or
momentum scale, the trajectory gets attracted to the fixed point. As a result of this ‘benign’
high energy, i.e. short distance behaviour, the theory is asymptotically (i.e. for k → ∞) safe
from unphysical divergences [20].

An important tool in analysing the RG flow of QEG is the effective average action and
its exact functional RG equation [21, 22]. In the case of QEG [3], the average action is
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Figure 1. A Type IIIa trajectory and the separatrix. The dashed line is a trajectory of the canonical
RG flow. The arrows point in the direction of decreasing k.

a diffeomorphism invariant functional of the metric, �k[gµν], which depends on a variable
infrared (IR) cutoff k. For k → ∞ it approaches the bare action S, while it equals the standard
effective action at k = 0. At least in Euclidean non-gauge theories on flat space, �k at
intermediate scales has the following properties [23]. (i) It defines an effective field theory at
the momentum scale k. This means that every physical process which involves only a single
momentum scale, say p, is well described by a tree level evaluation of �k with k chosen as
k = p. (ii) At least heuristically [23], �k may be interpreted as arising from a continuum
version of a Kadanoff–Wilson block spin procedure, i.e. it defines the dynamics of ‘coarse
grained’ dynamical variables which are averaged over a certain region of Euclidean spacetime.
Denoting the typical linear extension of the averaging region by �, one has � ≈ π/k in flat
spacetime. In this sense, �k can be thought of as a ‘microscope’ with an adjustable resolving
power � = �(k).

In quantum gravity where the metric is dynamical, the relationship between the IR cutoff k
and the ‘averaging scale’ � is more complicated in general. In the following, we shall review a
concrete definition of an ‘averaging’ or ‘coarse graining’ proper length scale � = �(k). Using
this definition, along with certain qualitative properties of the RG trajectories of QEG, we
shall demonstrate that the theory generates a minimal length scale in a dynamical way. The
interpretation of this scale is rather subtle, however. One has to carefully distinguish different
physical questions one could ask, because depending on the question a minimal length will or
will not become visible. Our presentation follows [24].

The running action �k[gµν] can be obtained from an exact functional RG equation [3]. In
practice it is usually solved on a truncated theory space. In the Einstein–Hilbert truncation,
for instance, �k is approximated by a functional of the form

�k[g, ḡ] = (16πG(k))−1
∫

d4x
√

g{−R(g) + 2�(k)} + Sgf[g, ḡ], (1)

involving a running Newton constant G(k) and cosmological constant �(k). Here Sgf is a
background gauge fixing term, depending on the background metric ḡµν , whose form is kept
classical for all k. It contains a constant gauge fixing parameter α. Likewise the truncation
ansatz contains the classical Faddeev–Popov ghost action corresponding to the background
gauge (not written out in equation (1)).

The qualitative properties of the trajectories following from the Einstein–Hilbert
approximation are well known by now [6]. Figure 1 shows a ‘Type IIIa’ trajectory which
would be the type that is presumably realized in the real universe since it is the only type
that has a positive Newton’s constant G(k) and a small positive cosmological constant �(k)

at macroscopic scales. In figure 1 it is plotted in terms of the dimensionless parameters
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g(k) ≡ k2G(k) and λ(k) ≡ �(k)/k2 and compared to the canonical trajectory (dashed curve)
with � = const and G = const. The Type IIIa trajectory contains the following four parts,
with increasing values of the cutoff k.

(i) The classical regime for small k where the trajectory is identical to the canonical one (in
figure 1, the segment between the points P1 and P2).

(ii) The turnover regime where the trajectory, close to the Gaussian fixed point at g = λ = 0,
begins to depart from the canonical one and turns over to the ‘separatrix’ which connects
the Gaussian with the non-Gaussian fixed point (g∗, λ∗). By definition, the coordinates
of the turning point T are gT and λT , and it is passed at the scale k = kT .

(iii) The growing � regime where G(k) is approximately constant, but �(k) runs proportional
to k4.

(iv) The fixed point regime where the trajectory approaches the non-Gaussian fixed point in
an oscillating manner. Directly at the fixed point one has g(k) ≡ g∗ and λ(k) ≡ λ∗,
and therefore G(k) ∝ k−2 and �(k) ∝ k2 for k → ∞. The non-Gaussian fixed point is
responsible for the nonperturbative renormalizability of the theory.

The behaviour of the trajectory in the extreme infrared is not yet known since the Einstein–
Hilbert approximation breaks down when λ(k) approaches the value 1/2. A more general
truncation is needed to approximate the RG trajectory in that region. For this reason the
classical region (i) does not necessarily extend to k = 0, and we speak about ‘laboratory’
scales for values of ≡ klab in the region where G and � are constant. The Planck mass is then
defined as mPl ≡ 1/

√
G(klab).

In the regimes (i), (ii) and (iii) the trajectory is well approximated by linearizing the RG
flow about the Gaussian fixed point. In terms of the dimensionful parameters, one finds that
in its linear regime G(k) = const and [25]

�(k) = �0[1 + (k/kT )4], (2)

where �0 is a constant. The corresponding dimensionless λ = �/k2 runs according to

λ(k) = �0
[
(1/k)2 +

(
k
/
k2
T

)2]
. (3)

Note that this function is invariant under the ‘duality transformation’ k �→ k2
T

/
k:

λ(k) = λ
(
k2
T

/
k
)
. (4)

For further details and a discussion of the other types of trajectories, see [6, 25]. The analysis
in the following sections refers entirely to trajectories of Type IIIa.

Let us briefly comment on more general truncations. Above we illustrated the general
ideas and constructions underlying truncated gravitational RG flows by means of the simplest
example, the Einstein–Hilbert truncation (1). The flow equations for the higher derivative R2

truncation are likewise known in a closed form [7, 8], and their solutions reveal important
evidence for asymptotic safety. They confirm the picture drawn above.

Concerning generalizations of the ghost sector truncation, no results are available yet but
there is a partial result concerning the gauge fixing term. Even if one makes the ansatz (1) for
�k[g, ḡ] in which the gauge fixing term has the classical (or more appropriately, bare) structure
Sgf = 1

2α

∫
d4x

√
ḡḡµνQµQν with any background-type gauge condition Qµ, one should treat

its prefactor as a running coupling: α ≡ αk . The beta function of α has not been determined
yet from the exact RG equation for �k , but there is a simple argument which allows us to
bypass this calculation.

In nonperturbative Yang-Mills theory and in perturbative quantum gravity, α = α∗ = 0
is known to be a fixed point for the α evolution. The following heuristic argument suggests
that the same should be true beyond perturbation theory for the functional integral defining
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the effective average action for gravity. In the standard functional integral the limit α → 0
corresponds to a sharp implementation of the gauge fixing condition, i.e. exp(−Sgf) becomes
proportional to δ[Qµ]. The domain of the Dhµν integration over metric fluctuations hµν

consists of those hµν’s which satisfy the gauge fixing condition exactly, Qµ = 0. Adding the
infrared cutoff at k amounts to suppressing some of the hµν modes while retaining the others.
But since all of them satisfy Qµ = 0, a variation of k cannot change the domain of the hµν

integration. The delta functional δ[Qµ] continues to be present for any value of k if it was
there originally. As a consequence, α vanishes for all k, i.e. α = 0 is a fixed point of the
α evolution [26]. In other words, we can mimic the dynamical treatment of a running α by
setting the gauge fixing parameter to the constant value α = 0. The calculation for α = 0
is more complicated than at α = 1, but for the Einstein–Hilbert truncation the α-dependence
of βg and βλ for arbitrary constant α has been found both for ‘type A’ and ‘type B’ cutoffs
[5]. The R2 truncation could be analysed only in the simpler α = 1 gauge, but the results
from the Einstein–Hilbert truncation suggest that the quantities of interest do not change much
between α = 0 and α = 1 [7, 8]. Only when one goes far away from the ‘physical’ point
α = 0, the Einstein–Hilbert truncation shows a significant α-dependence which can even lead
to qualitative changes in the properties of the beta functions [27].

2. Mean field metric and scale-dependent distances

Let us pick a specific RG trajectory, a curve k �→ �k on theory space. The effective field
equations implied by �k define a k-dependent expectation value of the metric, a kind of mean
field, 〈gµν〉k:

δ�k

δgµν(x)
[〈g〉k] = 0. (5)

In the Einstein–Hilbert truncation (1), these equations are

Rµν(〈g〉k) = �(k)〈gµν〉k. (6)

The infinitely many equations in (5), one at each scale k, are valid simultaneously, and all the
mean fields 〈gµν〉k refer to one and the same physical system, a ‘quantum spacetime’ in the
QEG sense. The mean fields 〈gµν〉k describe the metric structure in dependence on the length
scale on which the spacetime manifold is probed. An observer exploring the structure of
spacetime using a ‘microscope’ of resolution �(k) will perceive the universe as a Riemannian
manifold with the metric 〈gµν〉k . While 〈gµν〉k is a smooth classical metric at every fixed k, the
quantum spacetime can have fractal properties because on different scales different metrics
apply. In this sense, the metric structure on the quantum spacetime is given by an infinite set
{〈gµν〉k; 0 � k < ∞} of ordinary metrics.

Recently it has been shown [28] that in asymptotically safe theories of gravity, at sub-
Planckian distances, spacetime is indeed a fractal whose spectral dimension [29] equals 2.
It is quite remarkable that a similar dynamical dimensional reduction from 4 macroscopic
to 2 microscopic dimensions has also been observed in Monte Carlo simulations of causal
dynamical triangulations [30–32]. (See also [33].)

In order to understand the relation between � and the IR cutoff k, we must recall the
essential steps in the construction of the average action [3]. The formal starting point is the
path integral

∫
Dγµν exp(−S[γ ]) over all metrics γµν : gauge fixed by means of a background

gauge fixing condition. Even without an IR cutoff, upon introducing sources and performing
the usual Legendre transform one is led to an effective action �[gµν; ḡµν] which depends on
two metrics, the expectation value of γµν , denoted gµν , and the non-dynamical background
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field ḡµν . The functional �[gµν] ≡ �[gµν; ḡµν = gµν] obtained by equating the two metrics
generates a set of 1PI Green’s functions for the theory.

The IR cutoff is implemented by first expanding the shifted integration variable
hµν ≡ γµν − ḡµν in terms of eigenmodes of D̄2, the covariant Laplacian formed with the
background metric ḡµν , and interpreting Dhµν as an integration over all expansion coefficients.
Then, a suppression term is introduced which damps the contribution of all D̄2-modes with
eigenvalues smaller than k2. Following the usual steps [3, 23] this leads to the scale-dependent
functional �k[gµν; ḡµν], and again the action with one argument is obtained by equating the
two metrics: �k[gµν] ≡ �k[gµν; ḡµν = gµν]. It is this action which appears in (5). Because
of the identification of the two metrics it is, in a sense, the eigenmodes of D2, constructed
from the argument of �k[g], which are cut off at k2. Note however that neither the gµν- nor
the ḡµν-argument of �k has any dependence on k. Therefore, γµν is expanded in terms of
the eigenfunctions of a fixed operator D̄2. Since its eigenfunctions are complete, we really
integrate over all metrics when we lower k from infinity to zero. Also note that a k-dependent
mean field arises only at the point where we go ‘on shell’ with gµν = ḡµν : the solution 〈gµν〉k
to equation (5) depends on k, simply because �k does so.

In [28] an algorithm was proposed which allows the reconstruction of the ‘averaging’
scale � from the cutoff k. The input data are the set of metrics characterizing a quantum
manifold {〈gµν〉k}. The idea is to deduce the relation � = �(k) from the spectral properties of
the scale-dependent Laplacian ∆k ≡ D2(〈gµν〉k) built with the solution of the effective field
equation. More precisely, for every fixed value of k, one solves the eigenvalue problem of
−∆k and studies in particular the properties of the eigenfunctions whose eigenvalue is k2, or
nearest to k2 in the case of a discrete spectrum. We shall refer to an eigenmode of −∆k whose
eigenvalue is (approximately) the square of the cutoff k as a ‘cutoff mode’ (COM) and denote
the set of all COMs by COM(k).

If we ignore the k-dependence of ∆k for a moment (as would be appropriate for matter
theories in flat space) the COMs are, for a sharp cutoff, precisely the last modes integrated out
when lowering the cutoff, since the suppression term in the path integral cuts out all hµν-modes
with a eigenvalue smaller than k2.

For a non-gauge theory in flat space the coarse graining or averaging of fields is a well-
defined procedure, based upon ordinary Fourier analysis, and one finds that in this case the
length � is essentially the wavelength of the last modes integrated out, the COMs.

This observation motivates the following tentative definition of � in quantum gravity. We
determine the COMs of −∆k , analyse how fast these eigenfunctions vary on spacetime and
read off a typical coordinate distance �xµ characterizing the scale on which they vary. For
an oscillatory COM, for example, �x would correspond to an oscillation period. Finally, we
use the metric 〈gµν〉k itself in order to convert �xµ to a proper length. This proper length, by
definition, is �(k). The experience with theories in flat spacetime suggests that the COM scale
� is a plausible candidate for a physically sensible resolution function � = �(k), but there
might also be others, depending on the experimental setup one has in mind.

In a quantum spacetime, the (geodesic, say) distance of two given points x and y depends
on k:

Lk(x, y) ≡
∫
C(k)

xy

(〈gµν〉k dxµ dxν)1/2. (7)

Here, C(k)
xy denotes the (possibly k-dependent) geodesic connecting x to y. The interpretation

of this k-dependent distance is as follows. If k parametrizes the ‘resolution of the microscope’
with which the spacetime is observed, the metric 〈gµν〉k and correspondingly the distance
Lk(x, y) pertain to a specific scale of resolution, and different observers, using microscopes
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of different k-values, will measure different lengths in general. This k-dependence of lengths
is analogous to the ‘coastline of England phenomenon’ well known from fractal geometry
[34, 29].

3. A mimimal length on the QEG 4-sphere

The QEG 4-sphere [24] is a manifold in the QEG sense, i.e. supplied with a family of infinitely
many metrics {〈gµν〉k|k = 0, . . . ,∞}. To be specific, it is the family of maximally symmetric
solutions of (6) with positive curvature. It only exists provided �(k) > 0, which is the case
for all Type IIIa trajectories.

We may parametrize S4 by coordinates (ζ, η, θ, φ) with ranges 0 < ζ, η, θ < π and
0 � φ < 2π . The line element 〈ds2〉k ≡ 〈gµν〉k dxµ dxν can be written as

〈ds2〉k = r2(k)[dζ 2 + sin2 ζ(dη2 + sin2 η(dθ2 + sin2 θdφ2))], (8)

where r(k) is the k-dependent radius of S4 implied by (6)

r(k) =
√

3/�(k). (9)

The family of metrics (8), (9) constitutes a concrete example of a quantum spacetime, as
was discussed in [28]. In contrast to a Brownian curve or the coastline of England, distances
decrease when we increase the cutoff k. The metric scales as 〈gµν〉k ∝ 1/�(k) so that in the
fixed point regime 〈gµν〉k ∝ 1/k2, implying Lk(x, y) ∝ 1/k for any (geodesic) distance. On
the equator, ζ = η = θ = π/2, the geodesic distance (7) of two points x and y with angles
φ(x) and φ(y) reads

Lk(x, y) =
√

3/�(k)|φ(x) − φ(y)| = k−1
√

3/λ(k)|φ(x) − φ(y)|. (10)

On the quantum S4, the scalar eigenfunctions of −∆k are the spherical harmonics
Ynl1l2m(ζ, η, θ, φ), labelled by four integer quantum numbers n, l1, l2 and m, where n �
l1 � l2 � |m|. They have the eigenvalues

En = n(n + 3)/r2(k), n = 0, 1, 2, 3, . . . . (11)

The eigenvalues for the vector and tensor modes are slightly different, but for large n the
difference becomes negligible and the spectrum is to a good approximation continuous. We
will use this continuum approximation since we are interested in small angular distances �φ

anyway. Let us determine the associated set of cutoff modes COM (k), i.e. the eigenfunctions
with −∆k-eigenvalue as close as possible to k2. Inserting E ≈ k2 into (11) and using
equation (9) for r(k), we find the following equation for the n-quantum number of the COMs
at scale k:

n(k) ≈
√

3/�(k)k =
√

3/λ(k). (12)

Obviously n(k) is indeed large if λ(k) � 1. The set COM(k) consists of all harmonics Ynl1l2m

with n fixed by equation (12) and l1, l2 and m arbitrary.
Apart from its obvious dependence on the scale, the set COM (k) depends on the RG

trajectory via the function λ(k) which determines n(k). The function λ = λ(k) is not invertible
in general and different k’s can lead to the same COM(k). Let us look at the Type IIIa trajectory
in figure 1 as an example. First we concentrate on its part close to the turning point, staying
away from the spiralling regime in the UV, and the IR region where the Einstein–Hilbert
truncation breaks down. We then observe that for every scale k < kT below the turning point,
there exists a corresponding scale k� > kT which has the same λ- and therefore n-value. As
a result, the corresponding cutoff modes are equal at the two scales: COM(k) = COM(k�).
If the turning point is sufficiently close to the Gaussian fixed point, and k is not too far from
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kT , we may use the linearization (3) for an approximate determination of k�. Because of the
‘duality symmetry’ (4), it is given by k� = k2

T

/
k. In the ‘spiralling’ regime, many different

k-values have the same λ(k) and COM(k).
Next, we determine the degree of position dependence of the COMs and quantify their

‘resolving power’. In order to convert the estimate for n(k), equation (12), to an angular
resolution, we note that it is sufficient to do so for one position and one direction. By the
translation and rotation symmetries of the sphere, the resolution will be the same at any other
point and in any other direction. We therefore choose to determine the angular resolution of
the modes along the equator.

Two of the ∆k-eigenfunctions with eigenvalue n(k), namely Y± ≡ Ynnn±n, oscillate most
rapidly as a function of φ, and we shall use them in order to define the angular resolution.
Their φ-dependence is e±inφ and the corresponding angular resolution is

�φ(k) = π/n(k) = π
√

λ(k)/3. (13)

As expected, the angular resolution implied by the COMs depends on the RG trajectory. It
does so only via the function λ = λ(k) and, as a result, can be of the same size for different
values of k.

By definition, the COM scale � is the proper length corresponding to �φ(k) as computed
with the metric 〈gµν〉k of equations (8) and (9). From equations (10) and (13), we obtain

�(k) = π/k. (14)

So we find that, as in theories on a classical flat spacetime, the natural proper length scale � of
the COM(k)-modes is just π/k. Thanks to the symmetry of the sphere, it is neither position
nor direction dependent.

Taking the result � ∝ 1/k, it seems as if nothing remarkable had happened. But the
surprising effects appear in our result for the angular resolution, equation (13). As we can see
from the flow diagram of figure 1, λ(k) takes on a minimum value λT at the turning point T. In
fact, as λ(k) � λT for any scale k, we conclude that the angular resolution �φ(k) is bounded
below by the minimum angular resolution

�φmin = π
√

λT /3. (15)

Stated differently, there does not exist any cutoff k for which �φ(k) would be smaller than
�φmin. On the other hand, angular resolutions between �φmin and �φ∗ ≡ π

√
λ∗/3 are

realized for at least two scales k.
What has happened here? Coming from small k, we travel along the RG trajectory and

follow its S4 solutions, observing spacetime with a ‘microscope’ of variable proper resolution
�(k). At first, in the classical regime, an increase of k leads to the resolution of finer and
finer structures since � = const implies �φ(k) ∝ 1/k. For the canonical RG trajectory,
this behaviour would continue even for k → ∞. In quantum gravity, however, in region
(ii), the sphere starts to shrink, due to a growing cosmological constant �(k). At the turning
point scale kT at which λ(k) assumes its minimum λT , the shrinking becomes faster than the
improvement of the resolution (r(k) ∝ k−2 in region (iii)). Although we can resolve smaller
and smaller proper distances, this is of no use, since the sphere is shrinking so fast that a
smaller proper length corresponds to a larger angular distance. Finally, in the fixed point
regime (at large angles although this is an ultraviolet fixed point), the shrinking slows down to
a rate that exactly cancels the improved resolution of the microscope (r(k) ∝ k−1) so that the
angular resolution approaches a constant value �φ∗ after the oscillations have been damped
away.

The minimum of �φ at the turning point is equivalent to a maximum of the n quantum
number the COMs can have: nmax ≈ √

3/λT . This result does not mean that in the fundamental
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path integral underlying the flow equation not all quantum fluctuations are integrated out when
k is lowered from infinity to k = 0. It should instead be thought of as reflecting properties
of the mean field 〈gµν〉k . Rather than the spectrum of the k-independent operator D̄2 relevant
in the path integral, we analysed that of the explicitly k-dependent Laplacian D2(〈gµν〉k); its
explicit k-dependence is due to the scale dependence of the on-shell metric. Our argument
reveals that the effective spacetime with the running on-shell metric cannot support harmonic
modes of arbitrarily fine angular resolution.

This phenomenon is a purely dynamical one; the finite resolution is not built in at the
kinematical (i.e. γµν-) level, as would be the case, for instance, if the fundamental theory was
defined on a lattice. It is also important to stress that, if the non-Gaussian fixed point exists,
Green’s functions Gn(x1, x2, . . . , xn) can be made well defined at all non-coincident points,
i.e. for arbitrarily small coordinate distances among x

µ

i ’s. Those Green’s functions contain
information even about angular scales smaller than �φmin, in particular they ‘know’ about the
asymptotic safety of the theory which manifests itself only at scales k � kT .

In fact, the argument leading to the finite resolution �φmin is fairly independent of the
high energy behaviour of the theory. The crucial ingredient in the above reasoning was the
occurrence of a minimum value for λ(k). This minimum occurs as a direct consequence
of the k4-running of �(k) given in equation (2). However, this k4-running occurs already in
standard perturbation theory, simply reflecting the quartic divergences of all vacuum diagrams.
From this point of view, our argument is rather robust.

The upper bound on the angular momentum-like quantum number n is reminiscent of the
‘fuzzy sphere’ constructed in [35]. While in the case of the fuzzy sphere the finite angular
resolution is put in ‘by hand’, in the present case it emerges as a consequence of the quantum
gravitational dynamics.

It is instructive to ask which proper length would be ascribed to �φmin by an observer
using the macroscopic, classical metric 〈gµν〉klab , where klab is any scale in the classical regime
in which G and � do not run (in figure 1 between the points P1 and P2). We denote this
proper length by Lmacro

min ; it obeys Lmacro
min = r(klab)�φmin. Using equations (9), (15) and (2),

and assuming klab � kT , we obtain

Lmacro
min = π

kT

√
�(kT )

�(klab)
= π

kT

[
2

1 + (klab/kT )4

]1/2

≈
√

2πk−1
T . (16)

Remarkably, this minimal proper length is different in general from the Planck length which is
usually thought to set the minimal length scale. In fact, Lmacro

min can be much larger than
�Pl ≡ m−1

Pl . The trajectory realized in nature seems to be an extreme example: it has
k−1
T ≈ 1030�Pl ≈ 10−3 cm, and Lmacro

min is of the same order of magnitude. Should we
therefore expect to find an Lmacro

min of the order of 10−3 cm in the real world? The answer is no,
most probably. See point (ii) in the discussion at the end of the paper.

4. Intrinsic distance and scale doubling

In fractal geometry and any framework involving a length scale-dependent metric, one can try
to define an ‘intrinsic’ distance of any two points x and y by adjusting the resolving power
of the ‘microscope’ in such a way that the length scale it resolves equals approximately the,
yet to be determined, intrinsic (geodesic) distance from x to y.1 To be concrete, let us fix two
points x and y and let us try to assign to them a cutoff scale k ≡ k(x, y) which satisfies

1 This kind of dynamical adjustment of the resolution has also been used in the RG improvement of black hole [36]
and cosmological [37–42] spacetimes; see in particular [41].
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Lk(x,y)(x, y) = �(k(x, y)). (17)

Equation (17) is a self-consistency condition for k(x, y): the LHS of (17) is the distance from
x to y as seen by a microscope with k = k(x, y), and the RHS is precisely the resolution of
this microscope. If (17) has a unique solution k(x, y), one defines the intrinsic distance by
setting Lin(x, y) ≡ Lk(x,y)(x, y). Since �(k) = π/k, this distance is essentially the inverse
cutoff scale: Lin(x, y) = π/k(x, y).

Let us evaluate the self-consistency condition (17). Without loss of generality, we may
again assume that x and y are located on the equator of S4 so that equation (10) applies. Then,
by virtue of (13), equation (17) boils down to the following implicit equation for k(x, y):

λ(k(x, y)) = 3

π2
|φ(x) − φ(y)|2. (18)

Recalling the properties of the function λ(k) for a Type IIIa trajectory, we see that (18)
does not admit a unique solution for k(x, y). If x and y are such that φ(x) − φ(y)| < �φmin

it possesses no solution at all, and if |φ(x) − φ(y)| > �φmin it has at least two solutions.
Staying away from the deep UV and IR regimes, every solution k(x, y) < kT on the lower
branch of the RG trajectory has a partner solution k(x, y)� > kT on its upper branch. As a
result, the intrinsic distance of x and y is either undefined, or there exist at least two different
lengths which satisfy the self-consistency condition (17).

In the linear regime where k� = k2
T

/
k, the two lengths Lin(x, y) = π/k(x, y) and

Lin(x, y)� = π/k(x, y)� are related by

Lin(x, y)� = L2
T

Lin(x, y)
, (19)

where LT ≡ π/kT . If Lin(x, y) is large compared to the turning point length scale LT , the
‘dual’ scale Lin(x, y)� is small. In the extreme case, when applied to nature’s RG trajectory, the
duality (19) would even exchange the Planck regime with the Hubble regime: Lin(x, y) ≈ H−1

0
implies Lin(x, y)� ≈ lPl.

This ‘doubling’ of k-scales, again, is due to the ‘back bending’ of the RG trajectory at the
turning point T which implies that the function λ = λ(k) assumes a minimum at a finite scale
k = kT . Only the trajectories of Type IIIa possess a turning point of this kind, and this is one
of the reasons why they are particularly interesting and we restricted our discussion to them.

5. Discussion

While its origin is quite clear, the physical implications of the scale doubling and the duality
symmetry are somewhat mysterious. To some extent, the difficulty of giving a precise physical
meaning to them is related to the fact that one actually should define the ‘resolution of the
microscope’ in terms of realistic experiments rather than the perhaps too strongly idealized
mathematical model of a measurement based upon the COMs. For various reasons, it seems
premature to assign direct observational relevance to the minimal angular resolution and the
scale doubling.

(i) Only the coordinate distance �φ(k) assumes a minimum, but not the corresponding
proper distance computed with the running metric 〈gµν〉k . In particular, the resolution
function �(k) = π/k is exactly the same as in flat space. Nevertheless, the COM
microscope is unable to distinguish points with an angular separation below �φmin!

(ii) Our analysis applies to pure gravity. In presence of matter, the ‘fuzziness’ of S4 can
become visible probably only at scales where the cosmological constant dominates the
energy density. In particular, the fuzziness might be masked by the backreaction of a
realistic measuring apparatus on the spacetime structure.
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(iii) As for a possible physical significance of the duality symmetry, it is to be noted that
the two scales which it relates, k < kT and k� > kT , have a rather different status
as far as quantum fluctuations about the mean field metric 〈gµν〉k are concerned. The
structure of the exact RG equation is such that the larger the fluctuations, the stronger the
renormalization effects are. As a result, the metric fluctuations about 〈gµν〉k� on the upper
branch are certainly larger than at the dual point on the lower branch of the RG trajectory.

Clearly, more work is needed in order to understand these rather intriguing issues better.
We hope to return to them elsewhere.

References

[1] For a review, see Garay L J 1995 Int. J. Mod. Phys. A 10 145 and references therein
[2] Weinberg S 1979 General Relativity, An Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge:

Cambridge University Press)
Weinberg S 1997 Preprint hep-th/9702027

[3] Reuter M 1998 Phys. Rev. D 57 971 (Preprint hep-th/9605030)
[4] Dou D and Percacci R 1998 Class. Quantum Grav. 15 3449
[5] Lauscher O and Reuter M 2002 Phys. Rev. D 65 025013 (Preprint hep-th/0108040)
[6] Reuter M and Saueressig F 2002 Phys. Rev. D 65 065016 (Preprint hep-th/0110054)
[7] Lauscher O and Reuter M 2002 Phys. Rev. D 66 025026 (Preprint hep-th/0205062)
[8] Lauscher O and Reuter M 2002 Class. Quantum Grav. 19 483 (Preprint hep-th/0110021)
[9] Lauscher O and Reuter M 2002 Int. J. Mod. Phys. A 17 993 (Preprint hep-th/0112089)

[10] Souma W 1999 Prog. Theor. Phys. 102 181
[11] Percacci R and Perini D 2003 Phys. Rev. D 67 081503

Percacci R and Perini D 2003 Phys. Rev. D 68 044018
Codello A and Percacci R 2006 Preprint hep-th/0607128

[12] Perini D 2004 Nucl. Phys. Proc. Suppl. C 127 185
[13] Reuter M and Saueressig F 2002 Phys. Rev. D 66 125001 (Preprint hep-th/0206145)

Reuter M and Saueressig F 2004 Fortschr. Phys. 52 650 (Preprint hep-th/0311056)
[14] Litim D 2004 Phys. Rev. Lett. 92 201301

Fischer P and Litim D 2006 Preprint hep-th/0602203
[15] Bonanno A and Reuter M 2005 J. High Energy Phys. JHEP02(2005)035 (Preprint hep-th/0410191)
[16] Percacci R and Perini D 2004 Class. Quantum Grav. 21 5035 (Preprint hep-th/0401071)
[17] Percacci R 2004 Preprint hep-th/0409199
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